Data Science Hub
  • Data Science Hub
  • STATISTICS
    • Introduction
    • Fundamentals
      • Data Types
      • Central Tendency, Asymmetry, and Variability
      • Sampling
      • Confidence Interval
      • Hypothesis Testing
    • Distributions
      • Exponential Distribution
    • A/B Testing
      • Sample Size Calculation
      • Multiple Testing
  • Database
    • Database Fundamentals
    • Database Management Systems
    • Data Warehouse vs Data Lake
  • SQL
    • SQL Basics
      • Creating and Modifying Tables/Views
      • Data Types
      • Joins
    • SQL Rules
    • SQL Aggregate Functions
    • SQL Window Functions
    • SQL Data Manipulation
      • String Operations
      • Date/Time Operations
    • SQL Descriptive Stats
    • SQL Tips
    • SQL Performance Tuning
    • SQL Customization
    • SQL Practice
      • Designing Databases
        • Spotify Database Design
      • Most Commonly Asked
      • Mixed Queries
      • Popular Websites For SQL Practice
        • SQLZoo
          • World - BBC Tables
            • SUM and COUNT Tutorial
            • SELECT within SELECT Tutorial
            • SELECT from WORLD Tutorial
            • Select Quiz
            • BBC QUIZ
            • Nested SELECT Quiz
            • SUM and COUNT Quiz
          • Nobel Table
            • SELECT from Nobel Tutorial
            • Nobel Quiz
          • Soccer / Football Tables
            • JOIN Tutorial
            • JOIN Quiz
          • Movie / Actor / Casting Tables
            • More JOIN Operations Tutorial
            • JOIN Quiz 2
          • Teacher - Dept Tables
            • Using Null Quiz
          • Edinburgh Buses Table
            • Self join Quiz
        • HackerRank
          • SQL (Basic)
            • Select All
            • Select By ID
            • Japanese Cities' Attributes
            • Revising the Select Query I
            • Revising the Select Query II
            • Revising Aggregations - The Count Function
            • Revising Aggregations - The Sum Function
            • Revising Aggregations - Averages
            • Average Population
            • Japan Population
            • Population Density Difference
            • Population Census
            • African Cities
            • Average Population of Each Continent
            • Weather Observation Station 1
            • Weather Observation Station 2
            • Weather Observation Station 3
            • Weather Observation Station 4
            • Weather Observation Station 6
            • Weather Observation Station 7
            • Weather Observation Station 8
            • Weather Observation Station 9
            • Weather Observation Station 10
            • Weather Observation Station 11
            • Weather Observation Station 12
            • Weather Observation Station 13
            • Weather Observation Station 14
            • Weather Observation Station 15
            • Weather Observation Station 16
            • Weather Observation Station 17
            • Weather Observation Station 18
            • Weather Observation Station 19
            • Higher Than 75 Marks
            • Employee Names
            • Employee Salaries
            • The Blunder
            • Top Earners
            • Type of Triangle
            • The PADS
          • SQL (Intermediate)
            • Weather Observation Station 5
            • Weather Observation Station 20
            • New Companies
            • The Report
            • Top Competitors
            • Ollivander's Inventory
            • Challenges
            • Contest Leaderboard
            • SQL Project Planning
            • Placements
            • Symmetric Pairs
            • Binary Tree Nodes
            • Interviews
            • Occupations
          • SQL (Advanced)
            • Draw The Triangle 1
            • Draw The Triangle 2
            • Print Prime Numbers
            • 15 Days of Learning SQL
          • TABLES
            • City - Country
            • Station
            • Hackers - Submissions
            • Students
            • Employee - Employees
            • Occupations
            • Triangles
        • StrataScratch
          • Netflix
            • Oscar Nominees Table
            • Nominee Filmography Table
            • Nominee Information Table
          • Audible
            • Easy - Audible
          • Spotify
            • Worldwide Daily Song Ranking Table
            • Billboard Top 100 Year End Table
            • Daily Rankings 2017 US
          • Google
            • Easy - Google
            • Medium - Google
            • Hard - Google
        • LeetCode
          • Easy
  • Python
    • Basics
      • Variables and DataTypes
        • Lists
        • Dictionaries
      • Control Flow
      • Functions
    • Object Oriented Programming
      • Restaurant Modeler
    • Pythonic Resources
    • Projects
  • Machine Learning
    • Fundamentals
      • Supervised Learning
        • Classification Algorithms
          • k-Nearest Neighbors
            • kNN Parameters & Attributes
          • Logistic Regression
        • Classification Report
      • UnSupervised Learning
        • Clustering
          • Evaluation
      • Preprocessing
        • Scalers: Standard vs MinMax
        • Feature Selection vs Dimensionality Reduction
        • Encoding
    • Frameworks
    • Machine Learning in Advertising
    • Natural Language Processing
      • Stopwords
      • Name Entity Recognition (NER)
      • Sentiment Analysis
        • Agoda Reviews - Part I - Scraping Reviews, Detecting Languages, and Preprocessing
        • Agoda Reviews - Part II - Sentiment Analysis and WordClouds
    • Recommendation Systems
      • Spotify Recommender System - Artists
  • Geospatial Analysis
    • Geospatial Analysis Basics
    • GSA at Work
      • Web Scraping and Mapping
  • GIT
    • GIT Essentials
    • Connecting to GitHub
  • FAQ
    • Statistics
  • Cloud Computing
    • Introduction to Cloud Computing
    • Google Cloud Platform
  • Docker
    • What is Docker?
Powered by GitBook
On this page
  • What is Data warehouse?
  • What is DataLake?

Was this helpful?

  1. Database

Data Warehouse vs Data Lake

Differences between the top two choices for storing Big Data

Last updated 1 year ago

Was this helpful?

When considering the storage of big data, data lakes and data warehouses emerge as the primary choices. Data warehouses are typically employed for the analysis of structured data, whereas data lakes serve as repositories for vast and varied datasets, regardless of their structural format.

What is Data warehouse?

A data warehouse is a centralized repository for storing, managing, and analyzing large volumes of data from various sources within an organization. It is designed to support business intelligence (BI) and data analytics activities by providing a structured, efficient, and scalable way to store and access data. Data warehouses are a critical component of modern data-driven decision-making processes within businesses and organizations.

Here are some key characteristics and concepts associated with data warehouses:

  1. Data Integration: Data warehouses consolidate data from multiple sources, which can include operational databases, external data feeds, spreadsheets, and more. This integration process ensures that data is consistent and can be analyzed holistically.

  2. Structured and Optimized: Data in a data warehouse is typically structured and optimized for analytical queries. It is transformed into a format that allows for faster query performance, often through processes like data normalization, indexing, and aggregation.

  3. Historical Data: Data warehouses often maintain historical data, allowing organizations to analyze trends and make decisions based on past performance. This historical data is usually stored in a time-series fashion, with timestamps indicating when each data point was captured.

  4. Subject-Oriented: Data warehouses are organized around specific subject areas, such as sales, finance, inventory, or customer data. This subject-oriented approach makes it easier for analysts and decision-makers to access the data they need for their specific domain.

  5. Separation of Data and Analysis: In a data warehouse, data is separated from the tools used for analysis. Analysts can use various BI and reporting tools to query and visualize the data without affecting the source systems.

  6. Scalability: Data warehouses are designed to scale as an organization's data needs grow. They can handle large volumes of data, often through the use of distributed architectures and parallel processing.

  7. Data Quality and Governance: Data quality and governance processes are crucial in data warehousing to ensure the accuracy, consistency, and security of the stored data.

  8. Data Transformation: ETL (Extract, Transform, Load) processes are commonly used to extract data from source systems, transform it into a suitable format for analysis, and then load it into the data warehouse.

  9. Query and Reporting: Users can query the data warehouse using SQL or other query languages to extract insights and generate reports, dashboards, and visualizations.

Data warehouses are essential for businesses to make informed decisions, track performance, identify trends, and support strategic planning. They are often used in conjunction with business intelligence tools, data analytics platforms, and data mining techniques to extract valuable insights from the stored data. Some popular data warehousing solutions include Amazon Redshift, Google BigQuery, Microsoft Azure SQL Data Warehouse, and on-premises solutions like Oracle Exadata and Teradata.

What is DataLake?

A data lake is a storage repository that holds a vast amount of raw data in its native format until it is needed for analysis. Unlike traditional databases and structured data warehouses, data lakes are designed to store data in its original, unprocessed state, making them highly flexible for big data and analytics use cases. Data lakes have become popular in the context of big data and the need to handle diverse and massive datasets.

Key characteristics and concepts associated with data lakes include:

  1. Raw and Diverse Data: Data lakes store data in its raw form, which means it can include structured data, semi-structured data, and unstructured data. This data can come from various sources, including sensors, logs, social media, web applications, and more.

  2. Scalability: Data lakes are built to scale horizontally, which means they can accommodate an ever-increasing volume of data. They often use distributed storage systems to achieve this scalability.

  3. Cost-Effective Storage: Data lakes typically utilize cost-effective storage solutions, like object storage services, which can be more economical for storing large amounts of data compared to traditional databases.

  4. Schema on Read: In a data lake, the schema is applied when data is read, rather than when it's ingested. This approach allows users to define the structure and organization of the data as they access it, offering more flexibility for exploration and analysis.

  5. Data Transformation: Data lakes support both raw data and curated data. Data can be transformed and processed as needed, which means that data preparation and ETL (Extract, Transform, Load) tasks can occur within the data lake environment or be offloaded to other tools.

  6. Data Governance: Data lakes may have data governance and security features to manage access and protect sensitive data. Implementing proper governance is crucial, as the flexibility of data lakes can lead to challenges in maintaining data quality and compliance.

  7. Analytics and Data Processing: Data lakes are often used in conjunction with big data processing frameworks like Apache Spark, Hadoop, and various data processing engines to perform analytics, data mining, machine learning, and other data-driven tasks.

  8. Integration with Data Warehouse: In some cases, organizations use data lakes in conjunction with data warehouses to store and analyze data. Data lakes can act as a data source for data warehouses, where curated data is used for more structured and traditional analytics.

Popular technologies and platforms used for creating data lakes include Amazon S3, Azure Data Lake Storage, Google Cloud Storage, and open-source frameworks like Apache Hadoop HDFS. Data lakes are particularly well-suited for organizations dealing with vast amounts of data and those looking to harness the power of big data and analytics for business insights.

Data Warehouse
Data Lake

Data Type

Historical data that has been structured to fit a relational database schema

Unstructured and structured data from various company data sources

Main Purpose

Analytics for business decisions

Cost-effective big data storage

Users

Data analysts and business analysts

Data scientists and engineers

Tasks

Typically read-only queries for aggregating and summarizing data

Storing data and big data analytics, like deep learning and real-time analytics

Size

Only stores data relevant to analysis

Stores all data that might be used—can take up petabytes!